Recombination and Replication in DNA Repair of Heavily Irradiated Deinococcus radiodurans

نویسندگان

  • Dea Slade
  • Ariel B. Lindner
  • Gregory Paul
  • Miroslav Radman
چکیده

Deinococcus radiodurans' extreme resistance to ionizing radiation, desiccation, and DNA-damaging chemicals involves a robust DNA repair that reassembles its shattered genome. The repair process requires diploidy and commences with an extensive exonucleolytic erosion of DNA fragments. Liberated single-stranded overhangs prime strand elongation on overlapping fragments and the elongated complementary strands reestablish chromosomal contiguity by annealing. We explored the interdependence of the DNA recombination and replication processes in the reconstitution of the D. radiodurans genome disintegrated by ionizing radiation. The priming of extensive DNA repair synthesis involves RecA and RadA proteins. DNA polymerase III is essential for the initiation of repair synthesis, whereas efficient elongation requires DNA polymerases I and III. Inactivation of both polymerases leads to degradation of DNA fragments and rapid cell death. The present in vivo characterization of key recombination and replication processes dissects the mechanism of DNA repair in heavily irradiated D. radiodurans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating Deinococcus radiodurans RecA protein filament formation on double-stranded DNA by a real-time single-molecule approach.

With the aid of an efficient, precise, and almost error-free DNA repair system, Deinococcus radiodurans can survive hundreds of double-strand breaks inflicted by high doses of irradiation or desiccation. RecA of D. radiodurans (DrRecA) plays a central role both in the early phase of repair by an extended synthesis-dependent strand annealing process and in the later more general homologous recom...

متن کامل

A Novel C-Terminal Domain of RecJ is Critical for Interaction with HerA in Deinococcus radiodurans

Homologous recombination (HR) generates error-free repair products, which plays an important role in double strand break repair and replication fork rescue processes. DNA end resection, the critical step in HR, is usually performed by a series of nuclease/helicase. RecJ was identified as a 5'-3' exonuclease involved in bacterial DNA end resection. Typical RecJ possesses a conserved DHH domain, ...

متن کامل

Crystal structure and DNA-binding analysis of RecO from Deinococcus radiodurans.

The RecFOR pathway has been shown to be essential for DNA repair through the process of homologous recombination in bacteria and, recently, to be important in the recovery of stalled replication forks following UV irradiation. RecO, along with RecR, RecF, RecQ and RecJ, is a principal actor in this fundamental DNA repair pathway. Here we present the three-dimensional structure of a member of th...

متن کامل

Effect of a recD mutation on DNA damage resistance and transformation in Deinococcus radiodurans.

The bacterium Deinococcus radiodurans is resistant to extremely high levels of DNA-damaging agents such as UV light, ionizing radiation, and chemicals such as hydrogen peroxide and mitomycin C. The organism is able to repair large numbers of double-strand breaks caused by ionizing radiation, in spite of the lack of the RecBCD enzyme, which is essential for double-strand DNA break repair in Esch...

متن کامل

Crystal Structure of Deinococcus radiodurans RecQ Helicase Catalytic Core Domain: The Interdomain Flexibility

RecQ DNA helicases are key enzymes in the maintenance of genome integrity, and they have functions in DNA replication, recombination, and repair. In contrast to most RecQs, RecQ from Deinococcus radiodurans (DrRecQ) possesses an unusual domain architecture that is crucial for its remarkable ability to repair DNA. Here, we determined the crystal structures of the DrRecQ helicase catalytic core a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 136  شماره 

صفحات  -

تاریخ انتشار 2009